function i4_modp ( i, j ) !*****************************************************************************80 ! !! I4_MODP returns the nonnegative remainder of I4 division. ! ! Discussion: ! ! The MOD function computes a result with the same sign as the ! quantity being divided. Thus, suppose you had an angle A, ! and you wanted to ensure that it was between 0 and 360. ! Then mod(A,360) would do, if A was positive, but if A ! was negative, your result would be between -360 and 0. ! ! On the other hand, I4_MODP(A,360) is between 0 and 360, always. ! ! If ! NREM = I4_MODP ( I, J ) ! NMULT = ( I - NREM ) / J ! then ! I = J * NMULT + NREM ! where NREM is always nonnegative. ! ! Example: ! ! I J MOD I4_MODP Factorization ! ! 107 50 7 7 107 = 2 * 50 + 7 ! 107 -50 7 7 107 = -2 * -50 + 7 ! -107 50 -7 43 -107 = -3 * 50 + 43 ! -107 -50 -7 43 -107 = 3 * -50 + 43 ! ! Licensing: ! ! This code is distributed under the GNU LGPL license. ! ! Modified: ! ! 02 March 1999 ! ! Author: ! ! John Burkardt ! ! Parameters: ! ! Input, integer ( kind = 4 ) I, the number to be divided. ! ! Input, integer ( kind = 4 ) J, the number that divides I. ! ! Output, integer ( kind = 4 ) I4_MODP, the nonnegative remainder ! when I is divided by J. ! implicit none integer ( kind = 4 ) i integer ( kind = 4 ) i4_modp integer ( kind = 4 ) j if ( j == 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4_MODP - Fatal error!' write ( *, '(a,i8)' ) ' I4_MODP ( I, J ) called with J = ', j stop end if i4_modp = mod ( i, j ) if ( i4_modp < 0 ) then i4_modp = i4_modp + abs ( j ) end if return end